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Abstract—It is a generally known that the Fourier transform
limit forbids a function and its Fourier transform to both be
sharply localized. Thus, this limit sets a lower bound to the degree
to which a band-limited pulse can be temporally compressed.
However, seemingly counterintuitive waveforms have been theo-
retically discovered, which, across finite time intervals, vary faster
than their highest frequency components. While these so-called
superoscillatory waveforms are very difficult to synthesize due to
their high amplitude sidebands and high sensitivity, they open up
the possibility toward arbitrarily compressing a temporal pulse,
without hindrances from bandwidth limitations. In this paper, we
report the design and realization of a class of superoscillatory elec-
tromagnetic waveforms for which the sideband amplitudes, and
hence, the sensitivity can be regulated. We adapt Schelkunoff’s
method for superdirectivity to design such temporally compressed
superoscillatory pulses, which we ultimately realize in an exper-
iment, achieving pulse compression 47% improved beyond the
Fourier transform limit.

Index Terms—Fourier transform limit, pulse compression, pulse
shaping, superdirectivity.

I. INTRODUCTION

T HE availability of narrow pulses is essential to scientific
experiments and instrumentation across the electromag-

netic spectrum—from microwave to optical frequencies and
beyond. However, regardless of the frequency of interest, the
mathematical uncertainty principle provides a lower bound to
the bandwidth-temporal width product of the electromagnetic
waveform [1], thus forbidding a pulse to have a temporal width
narrower than about the reciprocal of its bandwidth. This limi-
tation is more often known in the engineering community as the
Fourier transform limit. Since a waveform becomes transform
limited when all its frequency components are phase aligned,
most works on narrow pulse generation follow this simple gen-
eral strategy: obtain the widest possible spectrum, then align the
phase of all spectral components to generate a transform-limited
pulse. Various practical difficulties have been resolved towards
transform-limited pulse generation for both microwave and
optical regimes. Arbitrary pulse shaping has been demonstrated
at the microwave range using microstrip-based filters that shape
the amplitude and phase spectra of microwave impulses [2],
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[3]; few cycle, near transform-limited optical pulses have also
been demonstrated in various laboratory environments [4]–[6].
It would appear as though the only way to obtain narrower
pulses is to further extend the waveform bandwidth—which is
a subject of intense research, particularly in the optical regime.

There is, however, another route to bypass the Fourier trans-
form limit to obtain short temporal pulses. Properties of the
Fourier transform do not forbid the existence of so-called super-
oscillatory functions, which, over finite intervals, oscillate much
faster than their high-frequency band limit [7]–[9]. Through this
effect, one can obtain a widened effective bandwidth within
some finite temporal interval, and thereby construct waveforms
with narrow peaks and rapid varying features without actually
possessing a wide bandwidth. Hence, superoscillations enable
one to construct an ultrashort temporal pulse beyond that al-
lowed in the Fourier transform limit. (See the Appendix for fur-
ther details.)

Though first introduced for quantum mechanical systems
[7]–[9], superoscillations are theorized to occur in a wide range
of waveforms including time-domain waveforms. It has even
been suggested that an entire musical symphony can be encoded
within a signal of 1-Hz bandwidth [8]. However, superoscilla-
tory waveforms have proven difficult to realize. While several
methods have been suggested for designing superoscillatory
waveforms [9]–[11], temporal superoscillations have yet to be
realized in experiment, likely due to two major reasons. Firstly,
it is commonly thought that superoscillatory waveforms contain
uncontrolled sidebands outside the region of superoscillatory
behavior, whose amplitude could be orders of magnitude higher
than the peak amplitude within the region of superoscillatory
behavior. Secondly, it is also perceived that the construction
of superoscillatory waveforms involves a very high degree
of sensitivity. These perceptions make superoscillatory pulse
compression seem both challenging and impractical. In the
following, we introduce a superoscillatory pulse design method
that allows one to design a waveform’s superoscillatory region,
but at the same time also control the sideband amplitude,
and thus arrive at practical superoscillatory waveforms with
reasonable waveform sensitivity. This ultimately allows us to
demonstrate practical temporal pulse compression beyond the
Fourier transform limit.

II. THEORY AND FORMULATION

A. Schelkunoff Approach to Designing Temporal
Superoscillatory Waveforms

In a previous study, we concluded that superdirectivity is ac-
tually a superoscillation phenomenon in the spatial-frequency
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and space domains [12]. With this in mind, in the following we
adapt antenna design techniques to design temporal superoscil-
latory waveforms. First we define the spectrum of our waveform
as a sum of sinusoidal harmonics—or, equivalently, as a sum of
equi-spaced delta functions

(1)

where is the angular frequency, represents the location
of the lowest (most negative) frequency delta function, is
the frequency spacing between adjacent tones, and is the
weight for the th delta function. The temporal waveform is
then written as

(2)

where . We note that (1) is analogous to current exci-
tations on equi-spaced elements of an array, while (2) is analo-
gous to the corresponding array factor polynomial. At this point,
one can draw upon established works on discrete filter design
[13] to place the zeros in the polynomial, and thereby
design a waveform that is periodic in with the Bloch period

.
Schelkunoff, in his pioneering work on superdirective an-

tennas [14], showed that for antenna arrays with elements placed
less than half-wavelength apart, the antenna’s visible region is
mapped onto the -plane as an arc along the unit circle, but sub-
tends an angle less than from the origin. Hence, if one close
packs all available zeros along this arc, one can generate rapid
variations, and thereby obtain narrow beamwidths in the out-
going antenna pattern. Drawing on the similarity between (1)
and (2) and relevant equations in antenna array design, we ex-
tend Schelkunoff’s theory into the time domain, and conclude
the following: by close-packing zeros into a design time-interval

within its Bloch period , one can design a wave-
form that contains desired superoscillatory features within
while sacrificing some degrees of control in the interval outside

We demonstrate the above formulation through two design
examples: rapid superoscillatory oscillations and superoscilla-
tory pulse compression.

B. Design of Rapid Superoscillations

We first consider the fastest nonsuperoscillatory oscillation
that can be generated with a given bandwidth. This oscillation
will be a sinusoid of the highest constituent frequency, achieved
when

or
otherwise.

(3)

Substituting (3) into (2) yields

(4)

where and .
Thus, zeros for this sinusoid are equi-spaced across the
unit -circle with angular spacing .

To obtain superoscillations at a frequency times this highest
frequency , the zeros within the design region must
appear times as frequent

(5)

Close-packing zeros in such a manner within the design interval
will lead to the desired rapid oscillation. Obviously one must
ensure that the number of available zeros is sufficient for the
proposed operations before one can generate the rapid oscilla-
tion for the desired time interval. On the other hand, if there are
zeros left over from this shaping procedure, they can be used to
shape the region outside , to control, for example, the ampli-
tude of the sideband.

C. Design of a Superoscillatory Sharp Pulse

We borrow from relevant works on superdirective antennas
[15], [16] to design a Chebyshev superoscillatory pulse, which
is compressed beyond the Fourier-transform limit. To determine
zero locations for the construction of such a Chebyshev tem-
poral waveform, we simplify the notation in (2) for an even spec-
trum as follows:

(6)

where . in (6) differ from in (2) by a factor
of , a constant phase offset, and a change in index. We now
introduce with which we rewrite (6)
as

(7)

where is the th-order Chebyshev polynomial of the first
kind, defined as [17]

for
for

(8)

The property of relevance of the Chebyshev polynomial is that
its amplitude remains bounded below unity for the interval

, but rises rapidly for . In our design, we wish to lo-
cate zeros within a design interval , and obtain the
sharpest pulse while keeping sidelobes within the design in-
terval at a level that of the peak pulse amplitude. We achieve
that by the mapping

(9)
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subject to the boundary conditions

and

such that (10)

With this mapping, solving the decomposition relation

(11)

generates the spectral weights up to a multiplicative con-
stant. Finally, factoring (6) converts into a set of zero loca-
tions needed to synthesize a Chebyshev waveform. For ,
and the ratio comparable to the first sidelobe amplitude
for a normalized sinc pulse, the Chebyshev pulse designed in
this manner is superoscillatory, and the pulsewidth surpasses the
Fourier transform limit.

We end this section by comparing our temporal superoscilla-
tory sharp pulse with a superdirective antenna beam. First and
foremost, both waveforms achieve unconventional “sharpness”
in that the temporal superoscillatory pulse breaks the Fourier
transform limit, while the superdirective antenna beam breaks
the angular diffraction limit, or the diffraction limit for direc-
tivity [18]. However, the manifestation of sidebands differs for
these two effects. Sidebands remain part of the temporal wave-
form in our proposed approach to temporal superoscillatory
pulse shaping, but they are pushed into the evanescent region,
and rendered invisible in the case of antenna superdirectivity.
This difference arises because the far-field mapping process
in antenna theory does not find an analog in temporal super-
oscillation theory. The reader is referred to [12] for additional
information. The sidebands—visible or invisible—contribute
to power and sensitivity considerations in designing tem-
poral superoscillatory pulses and superdirective beams. For
superoscillations, it has been proven that energy in sidebands
varies polynomially with the superoscillatory region’s apparent
spectral width, and exponentially with its duration [19]. For
superdirective antennas, it has been found that the antenna’s
(ratio between stored and radiated power, or equivalently, the
energy ratio between evanescent and propagating-wave compo-
nents) increases approximately exponentially with directivity
[20]. Thus, in both cases, there exist strong tradeoffs between
resolution and power residing in the sidebands, the latter of
which also effects the sensitivity of the waveform. As noted in
Section I, sensitivity has been an impediment towards practical
implementations of time-domain superoscillatory waveforms.
Nonetheless, in the following, we will show that with our
design methodology, one can appreciably compress a pulse
from the Fourier transform limit, and still attain a reasonable
tolerance on sensitivity.

III. REALIZATION OF SUPEROSCILLATORY WAVEFORMS

A. Experimental Overview

In our proceeding experiments, we design and synthesize
two superoscillatory signals as time-varying voltage

Fig. 1. Schematic of the experimental setup. � ��� and ���� denote the discrete
voltage and impulse sequences inputted to the AWG, while � ��� and ���� de-
note the continuous time outputs from the AWG to the oscilloscope.

waveforms using an arbitrary waveform generator (AWG) with
a bandwidth of 500 MHz. A schematic of our experiment is
shown in Fig. 1. We sample at a rate of 1.25 GHz, and
input the sampled and normalized voltage sequence to
Channel 1 of an AWG, which performs sinc-interpolation on
the sample sequence supplied. At the same time, we input an
“impulse” sequence (a sample of value 1, followed by
an array of value 0) to Channel 2 of the AWG for triggering
purposes. The AWG outputs and , the reconstructed
continuous time signals from the sinc-interpolation process,
to an oscilloscope through RF coaxial cables. Using
as a trigger, we observe the reconstructed superoscillatory
waveform with an enhanced sampling rate of 8 GHz to clearly
resolve the superoscillatory features produced.

B. Generating Rapid Oscillations

First we demonstrate the generation of oscillations surpassing
the high-frequency band limit. We construct a waveform with
five cycles of superoscillations at 650 MHz—1.3 times the
waveform bandwidth of 500 MHz. We choose to implement
this waveform with 31 spectral components, giving us the
freedom of placing 30 zeros on the -plane. Following the
design formulation in Section II-B, we close-pack 11 zeros on
the unit circle, at an angular separation

rad (12)

We then place the remaining 19 zeros in the sideband region
to minimize the peak sideband amplitude [21], thus improving
waveform sensitivity. Fig. 2(a) and (b) shows the resultant
zero locations from our waveform design algorithm, and the
corresponding frequency spectrum of the waveform. Fig. 2(c)
shows excellent agreement between the calculated and experi-
mentally observed temporal waveforms. Slight deviations are
likely caused by the filtering effects of the electronic system.
Fig. 2(d) shows a close up on the region of superoscillation,
again showing excellent calculation-experiment agreement in
this fast oscillation region. A 650-MHz sinusoid is nicely fitted
onto the superoscillation ripples to show that superoscillation
at 1.3 times the bandwidth limit is indeed achieved. To the best
of our knowledge, this is the first experimental construction of
a superoscillatory wave in the time domain.

C. Superoscillatory Pulse Compression

Having demonstrated the generation of rapid oscillations be-
yond a waveform’s bandwidth limit, we now proceed to con-
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Fig. 2. Experimental demonstration of temporal superoscillation. (a) Zero lo-
cations for a waveform with five cycles of superoscillations at 650 MHz, which
is 1.3 times the pulse bandwidth limit of 500 MHz. Empty circles denote zeros
in the superoscillatory design region, while filled circles denote those outside
the superoscillatory design region. (b) Corresponding spectral amplitudes (nor-
malized). (c) Temporal profile of a period of the waveform, showing good agree-
ment between calculation (blue in online version) and experimental observation
(green in online version, dotted). (d) Close-up on the superoscillatory design re-
gion, comparing the experimental observation (green in online version, dotted)
against calculation (blue in online version), and shows excellent agreement be-
tween the two. Comparison with a 650-MHz sinusoid (red in online version,
dashed) indicates that superoscillation at 1.3 times the bandwidth limit is in-
deed achieved. Black squares denote sample points supplied to the AWG.

struct a superoscillatory pulse that is temporally compressed be-
yond the Fourier transform limit. We use 27 spectral lines evenly
spread between 500 MHz, which gives us freedom to locate 26
zeros on the -plane. We locate six zeros within the superoscil-
latory design interval ns using the polynomial expansion
method outlined in Section II-C. With this expansion, we con-
struct a waveform with the narrowest possible pulsewidth and
sidelobe levels below 20% of the peak amplitude. As in the pre-
vious example, we place the remaining 20 zeros outside the su-
peroscillatory region to minimize the sideband amplitude [21].
Fig. 3(a) and (b) shows the resulting zero locations and the cor-
responding spectral amplitude. Fig. 3(c) shows a period of the
temporal waveform. Fig. 3(d) shows a close-up across the de-
sign interval. Once again the calculated and experimental tem-
poral profiles align with excellent agreement. The pulsewidths
at full width at half maximum (FWHM) are 0.78 ns (calculation)
and 0.82 ns (experiment), which are 55% and 47%, respectively,
improved beyond a transform-limited sinc waveform, for which

Fig. 3. Temporal pulse compression beyond the transform limit. (a) Zero loca-
tions for a temporally compressed superoscillation pulse. Empty circles denote
zeros in the superoscillatory design region, while filled circles denote those out-
side the superoscillatory design region. (b) Corresponding spectral amplitudes
(normalized). (c) Temporal profile of a period of the waveform, showing good
agreement between calculation (blue in online version) and experimental obser-
vation (green in online version, dotted). Sideband amplitudes are 6.8 times the
pulse peak amplitude. (d) Close-up on the superoscillatory design region, com-
paring the experimental observation (green in online version, dotted), against
calculation (blue in online version) and a transform-limited sinc pulse (red in
online version, dashed). Their respective voltage FWHMs are 0.82 ns (exper-
iment), 0.78 ns (calculated), and 1.21 ns (sinc pulse). Black squares denote
sample points supplied to the AWG. (e) Spectrum of the waveforms as truncated
at the superoscillatory design region, again comparing experiment, calculation
and the transform-limited sinc (same labeling as above). The superoscillatory
waveform has considerable spectral component in the region (shaded) beyond
that obtained from truncating the diffraction-limited sinc function. This explains
the observation of variations faster than 500 MHz within this temporal region.

the FWHM measures 1.21 ns. This pulsewidth can be further
improved through tradeoffs with the duration of the design in-
terval and the sideband amplitude.

Fig. 3(e) shows the spectrum of the waveform if it were
truncated to include only the superoscillatory region. We see
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Fig. 4. Sensitivity analysis of the superoscillation waveform. The plot shows
typical wave profiles across the superoscillation region when all spectral com-
ponents of the waveform are subject to a randomly phased white Gaussian noise
with amplitude 1.5% of the strongest spectral component. While sidelobes levels
increase, the pulse shape and pulsewidth remains intact amidst this noise level.

that both the calculated and experimental spectra are decidedly
wider than the spectrum of a sinc function truncated across
the same interval. From this we can conclude that the effective
bandwidth for a superoscillatory waveform is indeed widened
in the time interval of superoscillation. We shall later elaborate
on the potential of using a truncated superoscillatory filter as a
simple way to expand the bandwidth of a pulse.

IV. DISCUSSION

The main result of this paper is the experimental demon-
stration of time-domain superoscillation, and the realization of
pulse compression beyond the Fourier transform limit. How-
ever, in the following, we elaborate on a few implications of
our foregoing formulation and experimentation.

A. Sensitivity Analysis

We first investigate the tolerable sensitivity of the generated
pulse from a theoretical perspective. We model the precision of
the generated spectral weights with a randomly phased white
Gaussian noise with mean amplitude 1.5% of the strongest spec-
tral component. Fig. 4 shows typical pulse magnitude varia-
tions when this spectral noise is added to our waveform. Amidst
this small level of noise, we observe the emergence of stronger
and asymmetric sidelobes within the design region, but the sub-
transform limited pulsewidth is preserved. Thus, we see that our
designed waveform achieves a level of reasonable robustness re-
quired for practical waveform generation.

We now examine the transmission characteristics of our
experimental system for which the frequency response is given
in Fig. 5. The frequency response is obtained by applying
a Fourier transform to an “impulse” sequence. As shown,
the spectral phase response is mostly linear across the range

MHz. The spectral amplitude, however, contains
a spike around dc, and slight modulations across this stretch.
In our experiments, we compensated the system’s dc offset
by introducing an opposing dc offset to our sample sequence
before inputting it to the AWG. However, we were able to
observe the designed superoscillatory signal without correcting
for the slight spectral amplitude modulations. The fact that
our designed superoscillatory waveforms tolerate these slight
modulations shows their robustness and practicality—which is

Fig. 5. Frequency response of the experimental system, consisting of the AWG,
DSO, and connecting cables.

a primary objective of our design methodology. Pre-compensa-
tion—adjusting the input through dividing the source spectrum
by the system’s transfer function—might be necessary when
one wishes to construct superoscillatory waveforms with higher
sensitivity.

B. Fast Varying Signal Synthesis

From Figs. 2(d) and 3(d), we observe that sample points sent
to the AWG are sparse in the superoscillatory region relative to
variations of the waveform. From a conventional perspective on
the Nyquist limit, these sample points, which are spaced more
than half an oscillation cycle apart, appear inadequate at cap-
turing the rapid variations within the waveforms. However, the
variations are faithfully restored upon the low-pass filtering dig-
ital-to-analog conversion process, due to the superoscillatory
nature of the waveform. This demonstrated capability of gen-
erating fast varying temporal waveforms beyond the Nyquist
limit (hence, also the Fourier transform limit) enables the gen-
eration of short pulses and other waveforms, which are tradi-
tionally deemed impossible for a specific bandwidth. There are,
of course, two caveats to this scheme. Firstly, high-energy side-
bands accompany the superoscillatory waveform. Secondly, the
strength of the superoscillation forms a tradeoff with waveform
sensitivity—as required by the Shannon limit [22]. Notwith-
standing, in the preceding we have demonstrated the realiza-
tion of superoscillatory sharp pulses with reasonable sensitivity.
Thus, this scheme should see potential application in situations
where one desires the fastest varying waveform from a system
with stringent band limitation.

C. Bandwidth Extension

A further extension to synthesizing superoscillatory fast
varying signals is to truncate the sidebands altogether. Fig. 3(e)
shows the spectra of the calculated and experimental wave-
forms, after they are truncated to include only the superoscil-
latory region. While temporal truncation itself can be seen as
a nonlinear, and hence, bandwidth extension process, from
Fig. 3(e) we observe that truncating a superoscillatory signal
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expands the signal bandwidth much more dramatically. Hence,
we see that superoscillatory waveform generation, followed
by a sideband-discarding truncation, form a simple bandwidth
extension tool potentially useful for ultra-wideband wireless
communication or spectroscopic applications that require wide
bandwidth signals. Admittedly much waveform power will
be discarded in a simple truncation process. Nonetheless, the
corresponding bandwidth extension can be of great use in
aforementioned applications, where power amplification is
available, and where one can afford to tradeoff power efficiency
for a gain in effective bandwidth. On the other hand, it would
be a valuable direction of research to investigate whether parts
of the truncated power from the sidebands can be reintegrated
back into the system, perhaps through a feedback mechanism.

V. CONCLUSION

In this paper, we have experimentally demonstrated temporal
pulse compression beyond the Fourier transform limit. We
adapted methods of superdirective antenna design to synthesize
sub-transform limit waveforms in a well controlled manner.
Our first realization of a temporal pulse 47% compressed be-
yond the Fourier transform limit, besides being an endeavour of
scientific interest, should also prove applicable to realms such
as time-domain measurement and synchronization, probing
ultrafast dynamics, and object range detection.

APPENDIX

Surpassing the Fourier Transform Limit: The Fourier
Transform limit can be stated as an inequality stating a definite
lower bound on the temporal and spectral width of a waveform
[1], [23]

(13)

where the constant is on the order of , but its exact
value depends on the waveform characteristics and the way
in which the temporal and spectral widths are measured. In
the microwave community where one has to contain an entire
waveform within a specified bandwidth, temporal widths are
often compared to those of a sinc distribution which makes “full
use” of the available bandwidth. In this context, and measuring
the temporal width at the voltage full-width-half-maximum, the
temporal width limit becomes

(14)

where is the spectral width over which the waveform is
nonzero.

With temporal superoscillations, while the overall spectral
width remains the same, a local spectral width is widened over a
predefined time interval. As a result, of the waveform, over
that predefined interval, can be compressed beyond the lower
bound stated in (14). Figs. 3(a)–3(d) shows such a temporal
pulse, which we have designed and experimentally realized.
The large amplitude sidebands are an inevitable artifact which

accompanies temporal superoscillations [19]. However, while
those sidebands widen the total temporal width of the wave-
form, one can design the waveform such that the sidebands are
sufficiently separated from the interval where superoscillatory
features appear. In this manner, through superoscillation one
can locally compress a temporal waveform beyond the Fourier
Transform limit.
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